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What are fractals? 

 A key characteristic of fractals is self-similarity. This means that similar structure 

is observed at many scales. Figure 1 illustrates the construction of a fractal known as the 

Koch curve. From a to d, the fractal is constructed by progressively adding copies of 

structure at smaller and smaller scale. A true mathematical fractal proceeds in this 

manner ad infinitum so that whatever magnification is used, smaller self similar structure 

will be observed.  

 

                                                           

 Figure 1. Construction of the Koch curve.  

       

      The Koch curve replicates exact copies of structure at every scale. This exact 

characteristic is referred to as geometrical self-similarity. In nature, fractals are more 

likely to exhibit a statistical self-similarity. The magnified parts of the fractal are 

statistically similar to the larger parts. 

     Self-similarity implies a scaling relationship. This means that the value of a property 

will depend on the resolution used to make the measurement. The property could be, for 

example, length or surface area. Referring again to Figure 1, the length of the Koch curve 

increases by the factor 4/3 with each iteration. Therefore, depending upon the resolution 

of the measurement, the length will change. Because the Koch curve is iterated ad 

infinitum, the distance between any two points is infinite. 
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            Fractals in nature exhibit a similar resolution dependence. A common example is 

coastlines. There is no correct value for the length of a coastline. It will be determined to 

be greater and greater as finer and finer measuring resolution is used. As finer resolution 

measurements are made, the ever smaller nooks and crannies are included in the total 

length. 

            Because there is no unique measurement of a fractal property such as length, it is 

generally of more use to express the scaling relationship which describes the dependence 

of a property on resolution. Figure 2 illustrates such a relationship for the west coast of 

Britain as measured by Richardson and interpreted from a fractal perspective by 

Mandelbrot (1,2). Plotting the log of coastline length as a function of the log of 

measurement resolution yields a straight line.  

 

  

 Figure 2. Length of the west coast of Britain increases with measurement resolution.  

  

         Note that the coastline length is not simply increasing linearly as measurement 

resolution is made finer. Rather, the length increase follows a power law. The following 

power function specifies the length of coastlines quite well:  

(1)        L(r) =  kr
1-D

   

L(r) = the total coastline length as a function of measurement resolution 

r  = the measurement resolution 
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k, D = constants  

Power law scaling is characteristic of fractals. Therefore, a relationship which 

yields a straight line on log-log coordinates can often identify an object or phenomena as 

fractal.   

            The self-similarity and scaling characteristics of fractals can be quantitatively 

measured by the use of the fractal dimension. Recall that the familiar Euclidean 

dimension is an integer 1,2, or 3 used to denote a line, surface, or volume respectively. In 

comparison, the fractal dimension provides a measure of how densely an object fills 

space or how many new parts of an object are observed as measurement resolution 

becomes finer. The fractal dimension can be integer or non-integer and is always greater 

than the ordinary Euclidean dimension for a given object. For coastlines, the constant D 

in equation 1 is the corresponding fractal dimension. Note that 1-D is simply the slope of 

the line in Figure 3. Consequently, the west coast of Britain has a fractal dimension of  ~ 

1.3. This number, which is independent of the measuring units,  provides quantitative 

scaling information. It can be interpreted as a measure of the coastline roughness or 

irregularity. In comparison with Britain, the coastline of Norway has a fractal dimension 

of ~ 1.52 (3). This means that the coastline of Norway has a  more jagged geometry and 

fills a plane to a greater extent than the line describing the west coast of Britain.  

            There are several different fractal dimensions which can be measured and they all 

have somewhat different meanings. However, to further provide a sense for the concept 

of fractal dimension, we will discuss the simplest which is the self-similarity dimension. 

This dimension only applies to geometrically self-similar objects like the Koch curve. For 

its determination, the number N of  smaller objects or pieces is counted when an object is 

magnified by some factor M. By magnification we mean specifically the factor needed to 

bring the smaller objects to exactly the same size as the object from which they were 

generated. The fractal dimension is then determined from:  

(2)        N = (M)
D
    

            N = the number of new copies of an object observed after magnification. 

            M = the factor by which the original object must be magnified to see the new 

copies. 

D = the fractal dimension.             

This can be rewritten: 

(3)        D = log (N) / log (M) 
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Figures 3 and 4 illustrate how fractal dimension effects space filling density.  

 Figure 3. Object with fractal dimension = 2.  Five iterations shown. 
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Figure 4. Object with fractal dimension = 1.26 has a low space filling density. 

 

 

         

The starting object, called an initiator, and an "H" in this case, is iterated 5 times. 

Because we are considering proper mathematical fractals it is necessary to imagine the 

objects iterated ad infinitum. In Figure 3, four new and exact copies are produced each 

time an H is magnified by 2. Therefore, the fractal dimension is given by:  

(4)        D = log(4)/log(2) = 2.0  

So Figure 3 is a line with a Euclidean dimension of 1 and a fractal dimension of 2. 

The line is so dense, it completely fills an area. Note that the fractal dimension provides 

an appropriate description of the line's space filling characteristics. For comparison, in 

Figure 4, a magnification of 3 is required to view the four smaller copies replicated at 

each iteration. This results in a lower space filling density and a correspondingly lower 

measure of fractal dimension:  

(5)        D = log(4)/log(3) = 1.26  
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It is important to note what the fractal dimension does not describe. It does not 

uniquely specify an object. For example, the Koch curve in Figure 1 and the line in 

Figure 4 both have the same fractal dimension (1.26).                           

Fractal analysis is a practical empirical tool. It provides a means for interpretation 

of data when fractal structure is present. Fractal analysis is used widely to classify and 

describe objects(4-9). It can also lead to proposals concerning the mechanisms underlying 

physical processes.  

            Fractals are found throughout nature. They are present in inorganic structures 

such as clouds and coastlines and in living structures, such as the circulation or intestinal 

systems in mammals (10). In living systems, this complex geometry has evolved to 

provide efficient solutions to a number of difficult problems, often related to fluid 

handling. This observation by itself suggests consideration of fractal structure to solve 

related engineering problems. 

            Finally, although we have referred to the fractal characteristics of objects, fractal 

analysis can equally be applied to processes in time. 
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